Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 654: 123965, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38442796

ABSTRACT

The oral bioavailability of paclitaxel is limited due to low solubility and high affinity for the P-glycoprotein (P-gp) efflux transporter. Here we hypothesized that maximizing the intestinal paclitaxel levels through apparent solubility enhancement and controlling thesimultaneous release of both paclitaxel and the P-gp inhibitor encequidar from amorphous solid dispersions (ASDs) would increase the oral bioavailability of paclitaxel. ASDs of paclitaxel and encequidar in polyvinylpyrrolidone K30 (PVP-K30), hydroxypropylmethylcellulose 5 (HPMC-5), and hydroxypropylmethylcellulose 4 K (HPMC-4K) were hence prepared by freeze-drying. In vitro dissolution studies showed that both compounds were released fastest from PVP-K30, then from HPMC-5, and slowest from HPMC-4K ASDs. The dissolution of paclitaxel from all polymers resulted in stable concentration levels above the apparent solubility. The pharmacokinetics of paclitaxel after oral administration to male Sprague-Dawley rats was investigated with or without 1 mg/kg encequidar, as amorphous solids or polymer-based ASDs. The bioavailability of paclitaxel increased 3- to 4-fold when administered as polymer-based ASDs relative to solid amorphous paclitaxel. However, when amorphous paclitaxel was co-administered with encequidar, either as an amorphous powder or as a polymer-based ASD, the bioavailability increased 2- to 4-fold, respectively. Interestingly, a noticeable increase in paclitaxel bioavailability of 24-fold was observed when paclitaxel and encequidar were co-administered as HPMC-5-based ASDs. We, therefore, suggest that controlling the dissolution rate of paclitaxel and encequidar in order to obtain simultaneous and timed release from polymer-based ASDs is a strategy to increase oral paclitaxel bioavailability.


Subject(s)
Polymers , Povidone , Rats , Male , Animals , Biological Availability , Rats, Sprague-Dawley , Hypromellose Derivatives , Solubility
2.
Int J Pharm ; 642: 123094, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37263451

ABSTRACT

P-glycoprotein (P-gp) inhibitors, like zosuquidar, partly increase oral bioavailability of P-gp substrates, such as etoposide. Here, it was hypothesised that co-release of etoposide and zosuquidar from amorphous solid dispersions (ASDs) may further increase oral etoposide bioavailability. This was envisioned through simultaneous co-release and subsequent spatiotemporal association of etoposide and zosuquidar in the small intestinal lumen. To further achieve this, ASDs of etoposide and zosuquidar in polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) 5, and HPMC 4 k were prepared by freeze-drying. From these ASDs, etoposide release was fastest from PVP, then HPMC 5 and slowest from HPMC 4. Release from PVP and HPMC5 resulted in stable supersaturations of etoposide. In transcellular permeability studies across MDCKII-MDR1 cell monolayers, the accumulated amount of etoposide increased 3.7-4.9-fold from amorphous etoposide or when incorporated into PVP- or HPMC 5-based ASDs, compared to crystalline etoposide. In vivo, the oral bioavailability in Sprague Dawley rats increased from 1.0 to 2.4-3.4 %, when etoposide was administered as amorphous drug or in ASDs. However, when etoposide and zosuquidar were co-administered, the oral bioavailability increased further to 8.2-18 %. Interestingly, a distinct increase in oral etoposide bioavailability to 26 % was observed when etoposide and zosuquidar were co-administration in HPMC5-based ASDs. The supersaturation of etoposide as well as the simultaneous co-release of etoposide and zosuquidar in the small intestinal lumen may explain the observed bioavailability increase. Overall, this study suggested that simultaneous co-release of an amorphous P-gp substrate and inhibitor may be a novel and viable formulation strategy to increase the bioavailability P-gp substrates.


Subject(s)
Povidone , Rats , Animals , Etoposide , Biological Availability , Solubility , Rats, Sprague-Dawley , Pharmaceutical Preparations/chemistry , Povidone/chemistry , Hypromellose Derivatives/chemistry
3.
Pharmaceutics ; 15(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36678911

ABSTRACT

P-glycoprotein (P-gp) limits the oral absorption of drug substances. Potent small molecule P-gp inhibitors (e.g., zosuquidar) and nonionic surfactants (e.g., polysorbate 20) inhibit P-gp by proposedly different mechanisms. Therefore, it was hypothesised that a combination of zosuquidar and polysorbate 20 may potentiate inhibition of P-gp-mediated efflux. P-gp inhibition by zosuquidar and polysorbate 20 in combination was assessed in a calcein-AM assay and in a transcellular etoposide permeability study in MDCKII-MDR1 and Caco-2 cells. Furthermore, solutions of etoposide, zosuquidar, and polysorbate 20 were orally administered to Sprague Dawley rats. Zosuquidar elicited a high level of nonspecific adsorption to various labware, which significantly affected the outcomes of the in vitro studies. Still, at certain zosuquidar and polysorbate 20 concentrations, additive P-gp inhibition was observed in vitro. In vivo, however, oral etoposide bioavailability decreased by coadministration of both zosuquidar and polysorbate 20 when compared to coadministration of etoposide with zosuquidar alone. For future formulation development, the present study provided important and novel knowledge about nonspecific zosuquidar adsorption, as well as insights into combinational P-gp inhibition by a third-generation P-gp inhibitor and a P-gp-inhibiting nonionic surfactant.

4.
Int J Pharm X ; 3: 100089, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34977557

ABSTRACT

P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 µM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063-63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6-4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 µM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5-10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.

5.
Int J Pharm ; 571: 118696, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31525443

ABSTRACT

In the small intestine, P-glycoprotein (P-gp) may limit the permeability of its substrates, which lead to reduced oral absorption. To circumvent the effect of P-gp, a nanocomposite material termed montmorillonite-surfactant hybrid particles was developed. The particles consisted of montmorillonite, the P-gp-inhibiting, nonionic surfactant, polysorbate 20, and the P-gp substrate, digoxin. The present study aimed to investigate if montmorillonite-surfactant hybrid particles could modulate the absorption of digoxin in vivo. Montmorillonite-surfactant hybrid particles were prepared by lyophilising an aqueous suspension of the constituents. Scanning electron microscopy, thermogravimetric analysis, and powder X-ray diffraction revealed an altered surface morphology, decreased water content, and intercalation of polysorbate 20 between montmorillonite layers. The particles were administered orally to Sprague Dawley rats, and digoxin was quantified by liquid chromatography-tandem mass spectrometry. Control digoxin-containing montmorillonite decreased the exposure of digoxin. In contrast, montmorillonite-surfactant hybrid particles increased AUC and Cmax by 31 and 91%, respectively, compared to digoxin in solution. It was hypothesised that montmorillonite-surfactant hybrid particles increased digoxin exposure by forming mucosa-localised elevated concentrations of polysorbate 20 and digoxin, which enhanced the inhibitory effect of polysorbate 20 on P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Digoxin/pharmacokinetics , Drug Carriers/pharmacology , Polysorbates/pharmacology , Surface-Active Agents/administration & dosage , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Administration, Oral , Animals , Area Under Curve , Bentonite/chemistry , Digoxin/administration & dosage , Drug Carriers/chemistry , Drug Compounding/methods , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Male , Models, Animal , Permeability , Polysorbates/chemistry , Rats, Sprague-Dawley
6.
Int J Pharm ; 566: 410-433, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31125713

ABSTRACT

Recently, it has become evident that pharmaceutical excipients may interfere with the activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC). The present review aims to provide an overview of surfactants shown to modulate substrate transport via SLCs and ABCs, and to discuss the relevance for oral drug absorption. In vitro, more than hundred surfactants have been suggested to decrease the efflux activity of P-glycoprotein (P-gp, ABCB1), and many of these surfactants also inhibit the breast cancer resistance protein (BCPR, ABCG2), while conflicting results have been reported for multidrug resistance-associated protein 2 (MRP2, ABCC2). In animals, surfactants such as pluronic® P85 and polysorbate 20 have been shown to enhance the oral absorption of P-gp and BCRP substrates. Many surfactants, including cremophor® EL and Solutol® HS 15 inhibiting ABC transporters, were also found to inhibit SLCs in cell cultures. These carriers were SLC16A1, SLC21A3, SLC21A9, SLC15A1-2, and SLC22A1-3. This overlap in specificity of surfactants that inhibit both transporters and carriers might influence the oral absorption of various drug substances, nutrients, and vitamins. Such biopharmaceutical elements may be relevant for future drug formulation design.


Subject(s)
Intestinal Absorption/drug effects , Membrane Transport Proteins/metabolism , Surface-Active Agents/administration & dosage , Administration, Oral , Animals , Biological Transport/drug effects , Humans , Multidrug Resistance-Associated Protein 2
SELECTION OF CITATIONS
SEARCH DETAIL
...